
# CONCRETE SCREW ANCHOR BUTTON HEAD / 316 (A4) STAINLESS STEEL



TECHNICAL DATA SHEET:

# **Design Made Easy**

ETAG 001 - Annex C Design Tables



# NCC Compliant AS 5216

Design tables in accordance with AS 5216 and ETAG 001- Annex C, essential for NCC compliance for safety critical applications.

The ETA document meets anchor testing and reporting requirements of AS 5216, essential for compliance with the NCC.





For Install Support techadvice@allfasteners.com.au



For Specification Support engineering@allfasteners.com.au



For Customer Support 1800 255 349





#### CE ETA ETA-18/0565









AnchorFOS









Brick Masonry



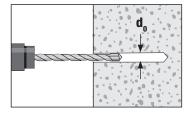


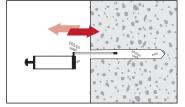


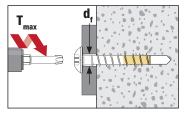


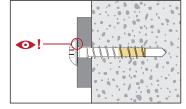


Concrete





Overhead Removable


# **MATERIAL PROPERTIES**


| Anchor size<br>(mm) | Steel tensile<br>design capacity,<br>$igoplus \mathbf{N}_{\mathbf{Rk},\mathbf{s}}$ (kN) | Steel shear<br>design capacity,<br>$igop V_{Rk,s}$ (kN) | Yield tensile<br>strength, <b>f<sub>yf</sub> (</b> MPa) | Ultimate tensile<br>strength, <b>f<sub>uf</sub> (</b> MPa) | Steel tension capacity reduction factor, $\phi_{\rm Ms}$ | Steel shear capacity reduction factor, $\phi_{\rm Ms}$ | Concrete tension capacity reduction factor, $\phi_{\rm Mc}$ | $\begin{array}{c} \text{Concrete shear} \\ \text{capacity reduction} \\ \text{factor, } \varphi_{\text{Mc}} \end{array}$ |
|---------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 8                   | 14.9                                                                                    | 9.0                                                     | 432                                                     | 540                                                        | 0.67                                                     | 0.8                                                    | 0.48                                                        | 0.67                                                                                                                     |

### **INSTALLATION**







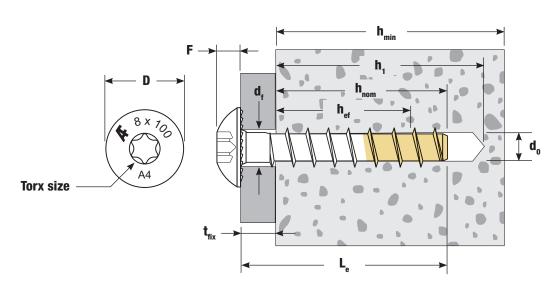


- 1. Drill the hole to the specified depth and diameter
- 2. Clean the hole
- 3. Screw in the anchor using an impact screw driver to the corresponding torque value / setting / maximum power output. Ensure not to over-tighten.
- 4. Check to ensure that you have full contact of screw head with fixture.



# **INSTALLATION DETAILS**

| Anchor size<br>(mm) | Diameter of<br>drill bit,<br><b>d<sub>o</sub> (mm)</b> | Clearance hole<br>in fixture,<br><b>d</b> <sub>f</sub> (mm) | Minimum<br>embedment<br>depth,<br><b>h<sub>nom</sub> (</b> mm) | Minimum hole<br>depth in<br>concrete,<br><b>h<sub>1</sub></b> (mm) | Minimum<br>member<br>thickness,<br><b>h<sub>min</sub></b> (mm) | Absolute<br>minimum edge<br>distance,<br><b>C<sub>min</sub> (</b> mm) | Absolute<br>minimum<br>anchor spacing,<br><b>S<sub>min</sub></b> (mm) | Maximum<br>fixture thickness,<br><b>t<sub>fix</sub> (mm)</b> | Max. power<br>output, power<br>tool setting,<br><b>T<sub>max</sub> (Nm)</b> |
|---------------------|--------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------|
| 8                   | 8                                                      | 11                                                          | 85                                                             | 95                                                                 | 125                                                            | 50                                                                    | 50                                                                    | 15                                                           | 120                                                                         |


The minimum embedment depths are specified based on ETA values tested and are required for NCC compliance and design according to AS 5216. For non-safety critical applications, smaller embedment can be used.

# DIMENSIONS AND PART NUMBERS

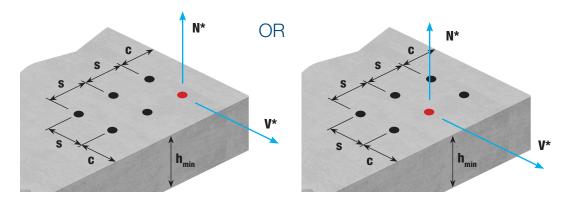
| Anchor<br>size (mm) | Description | Effective<br>length, <b>L<sub>e</sub></b><br>(mm) | Maximum<br>fixture<br>thickness,<br><b>t</b> <sub>fix</sub> (mm) | Part number | Head<br>height,<br><b>F</b> (mm) | Head<br>diameter,<br><b>D</b> (mm) | Torx<br>Size |  |
|---------------------|-------------|---------------------------------------------------|------------------------------------------------------------------|-------------|----------------------------------|------------------------------------|--------------|--|
| 8                   | 8 x 100mm   | 100                                               | 15                                                               | 1SABS08100  | 5.2                              | 21.9                               | 45           |  |

Check fixing length to ensure that you can achieve the minimum embedment depth  $(\mathbf{h}_{nom})$  with the fixture thickness  $(\mathbf{t}_{fix})$  used. Maximum  $\mathbf{t}_{fix}$  that can be achieved are listed in the adjacent table.

$$\mathbf{h}_{nom} = \mathbf{L}_{e} - \mathbf{t}_{fix}$$



TECHNICAL DATA SHEET:


CONCRETE SCREW-ANCHOR 316 (A4) STAINLESS STEEL / BUTTON HEAD

# Five Second Design Table – AS 5216 (SA TS 101) and ETAG 001 - Annex C

If you meet the parameters of the table below, your design can finish here!

|                     | thickness, |                                                 | CRACKED CONCRETE                         |                               |                       |                          |               |                                                              | UN-CRACKED CONCRETE           |                               |                          |               |           |                                                              |        |        |
|---------------------|------------|-------------------------------------------------|------------------------------------------|-------------------------------|-----------------------|--------------------------|---------------|--------------------------------------------------------------|-------------------------------|-------------------------------|--------------------------|---------------|-----------|--------------------------------------------------------------|--------|--------|
| Anchor<br>size (mm) |            | Minimum<br>embedment<br>depth,<br><b>h</b> (mm) | Minimum<br>edge<br>distance,             | Minimum<br>anchor<br>spacing, | Conc                  | on design ca<br><b> </b> | essive        | Shear<br>design<br>capacity,<br><b>φV<sub>Rk</sub></b> (kN), | Minimum<br>edge<br>distance,  | Minimum<br>anchor<br>spacing. |                          |               | ssive     | Shear<br>design<br>capacity,<br><b>фV<sub>Rk</sub> (kN),</b> |        |        |
|                     |            | nom ()                                          | nom (((((((((((((((((((((((((((((((((((( | <b>h<sub>nom</sub></b> (mm)   | n <sub>nom</sub> (mm) | <b>C</b> (mm)            | <b>S</b> (mm) | 20 MPa                                                       | strength, <b>f'</b><br>32 MPa | 50 MPa                        | for $f_c' \ge$<br>32 MPa | <b>C</b> (mm) | · · · · · |                                                              | 32 MPa | 50 MPa |
| 8                   | 125        | 85                                              | 50                                       | 100                           | 1.9                   | 2.4                      | 2.9           | 2.6                                                          | 50                            | 100                           | 1.9                      | 2.4           | 2.9       | 3.7                                                          |        |        |

Design capacities **per fixing** with the influence of edge distances and adjacent anchor spacings are tabulated. Table conservatively applies to either of the two worst-case fixings shown.



Worst-case fixing:

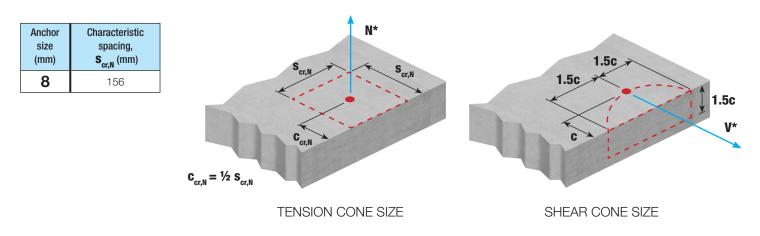
#### **NOTES**

- 1. This table is optimised for getting maximum tensile capacity while maintaining the absolute minimum edge distance. Higher capacities can be achieved, especially for shear. Please refer to the simplified design tables on the following pages or use Allfasteners design software for more complex design cases. Design tables are developed using this software.
- 2. AS 5216 (Cl. 3.3) requires all anchors to be designed in cracked concrete unless it can be shown that cracking (due to applied and intrinsic loads (e.g. shrinkage)) will not occur in concrete during service life.
- 3. Increasing fixing embedment will not increase published capacity to AS 5216 because the ETA testing for this anchor is done on just one most optimal embedment depth.
- 4. Published capacities have been reduced, where necessary, to account for cyclic loading and crack width cycling. This is part of the ETA certification process. This covers static and quasi-static loading, for example wind.
- It is assumed no dense reinforcement is present. Dense reinforcement can reduce tensile capacity. Dense reinforcement is not present if (a) spacing of bars of any diameter is ≥150mm, or (b) bars that are ≤10mm in diameter are spaced at ≥100mm apart.
- 6. It is assumed no edge reinforcement is present. Edge reinforcement can increase shear capacity.
- 7. Tables assume no cantilever effect (fixings not put into bending).
- 8. All anchors shall be installed strictly according to correct installation instructions and performance shall be checked on site to confirm adequate strength.



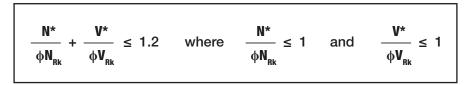
# Simplified Design Tables – AS 5216 (SA TS 101) and ETAG 001 - Annex C

### NOTES


- 1. Design capacity for the whole connection (not per fixing) is shown.
- 2. AS 5216 assumes the base plate is rigid.
- 3. Linear interpolation is permitted within the limts of the tables.
- 4. The design tables are developed using Allfasteners design software. For more complex design cases, please use the software.
- 5. Notes 2. 8. on previous page are also applicable to these design tables.

### EMBEDMENT AND CONCRETE THICKNESS

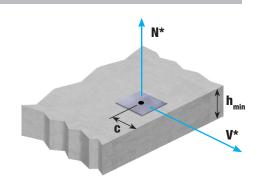
| Anchor size (mm) | Minimum member thickness, <b>h<sub>min</sub> (</b> mm) | Minimum embedment depth, <b>h<sub>nom</sub> (mm)</b><br>85 |  |  |  |
|------------------|--------------------------------------------------------|------------------------------------------------------------|--|--|--|
| 8                | 125                                                    | 85                                                         |  |  |  |


#### **CONCRETE CONE SIZE**

Use of concrete cone size information below is optional. It can help you determine and visualise the spacing and edge distance effects beyond those tabulated.



### **COMBINED ACTIONS**


When tension and shear loading acts simultaneously, the following equation must be satisfied:



TECHNICAL DATA SHEET:

CONCRETE SCREW-ANCHOR 316 (A4) STAINLESS STEEL / BUTTON HEAD

### SIMPLIFIED DESIGN – 1 ANCHOR PER BASE PLATE



|               |                                  |                                                          | [                                    | S CRAG | CKED CONCRETE | E                                                                                                                                                                                                                              |        |                                      |                                     | UN-CRAC | KED CONCRE | TE                     |        |  |  |
|---------------|----------------------------------|----------------------------------------------------------|--------------------------------------|--------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------|-------------------------------------|---------|------------|------------------------|--------|--|--|
| Anchor        | Edge<br>distance, <b>C</b>       | Tension design capacity,<br><b>фN<sub>Rk</sub> (</b> kN) |                                      |        | Shea          | $\begin{array}{c c} & \text{Shear design capacity,} & \text{Tension design ca} \\ & & \varphi \textbf{V}_{\textbf{Rk}} \left( \textbf{kN} \right) & & \varphi \textbf{N}_{\textbf{Rk}} \left( \textbf{kN} \right) \end{array}$ |        |                                      |                                     | oacity, | Shea       | Shear design capacity, |        |  |  |
| size (mm)     | (mm)                             | Cond                                                     | crete compre<br>strength, <b>f</b> c |        |               | crete compres<br>strength, <b>f</b> c                                                                                                                                                                                          |        |                                      | rete compre<br>strength, <b>f</b> c |         |            |                        |        |  |  |
|               |                                  | 20 MPa                                                   | 32 MPa                               | 50 MPa | a 20 MPa      | 32 MPa                                                                                                                                                                                                                         | 50 MPa | 20 MPa                               | 32 MPa                              | 50 MPa  | 20 MPa     | 32 MPa                 | 50 MPa |  |  |
|               | 50                               | 1.9                                                      | 2.4                                  | 2.9    | 3.1           | 4.0                                                                                                                                                                                                                            | 4.9    | 1.9                                  | 2.4                                 | 2.9     | 4.5        | 5.7                    | 7.0    |  |  |
| 8             | 60                               | 1.9                                                      | 2.4                                  | 2.9    | 4.1           | 5.1                                                                                                                                                                                                                            | 6.3    | 1.9                                  | 2.4                                 | 2.9     | 5.7        | 7.2                    | 8.9    |  |  |
| 0             | 80                               | 1.9                                                      | 2.4                                  | 2.9    | 6.0           | 7.6                                                                                                                                                                                                                            | 8.4    | 1.9                                  | 2.4                                 | 2.9     | 8.5        | 9.0                    | 9.0    |  |  |
|               | 125                              | 1.9                                                      | 2.4                                  | 2.9    | 8.9           | 9.0                                                                                                                                                                                                                            | 9.0    | 1.9                                  | 2.4                                 | 2.9     | 9.0        | 9.0                    | 9.0    |  |  |
| Failure Mode: | (T)Tension (S                    | S) Shear                                                 |                                      |        |               |                                                                                                                                                                                                                                |        |                                      |                                     |         |            |                        |        |  |  |
| PUL           | PULL-OUT (T) CONCRETE CONE (T) C |                                                          |                                      |        | CONCRETE SPL  | LITTING (T)                                                                                                                                                                                                                    | CONCRE | ETE EDGE (S) PRY-OUT (S) STEEL (T OR |                                     |         |            | OR S)                  |        |  |  |

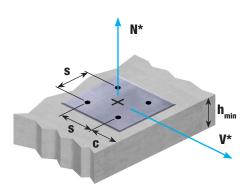


# SIMPLIFIED DESIGN – 2 ANCHORS PER BASE PLATE

| ↑ N*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| St.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 <sub>min</sub> |
| The second secon |                  |
| CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V*               |

|           |                   |               |        |                                                                     | CRACKE | ED CONCRET | Ē                                            |        |        |                                                              | UN-CRACH | KED CONCRE | TE                                                      |        |
|-----------|-------------------|---------------|--------|---------------------------------------------------------------------|--------|------------|----------------------------------------------|--------|--------|--------------------------------------------------------------|----------|------------|---------------------------------------------------------|--------|
| Anchor    | Edge<br>distance, | Spacing,      | Tensio | Tension design capacity,<br>$igoplus \mathbf{N}_{\mathbf{Rk}}$ (kN) |        |            | r design cap<br><b>фV<sub>Rk</sub> (</b> kN) | acity, | Tensio | ension design capacity,<br><b>\$\overline{N_{Rk}}\$</b> (kN) |          |            | <sup>∙</sup> design cap<br><b>φV<sub>Rk</sub> (</b> kN) | acity, |
| size (mm) | <b>C</b> (mm)     | <b>S</b> (mm) |        | rete compre<br>strength, <b>f</b>                                   |        |            | rete compre<br>strength, <b>f</b>            |        |        | rete compre<br>strength, <b>f</b>                            |          |            | rete compre<br>strength, <b>f</b> c                     |        |
|           |                   |               | 20 MPa | 32 MPa                                                              | 50 MPa | 20 MPa     | 32 MPa                                       | 50 MPa | 20 MPa | 32 MPa                                                       | 50 MPa   | 20 MPa     | 32 MPa                                                  | 50 MPa |
|           |                   | 50            | 3.8    | 4.8                                                                 | 5.9    | 4.2        | 5.3                                          | 6.6    | 3.8    | 4.8                                                          | 5.9      | 6.0        | 7.6                                                     | 9.3    |
|           | 50                | 70            | 3.8    | 4.8                                                                 | 5.9    | 4.6        | 5.9                                          | 7.2    | 3.8    | 4.8                                                          | 5.9      | 6.6        | 8.3                                                     | 10.2   |
|           |                   | 100           | 3.8    | 4.8                                                                 | 5.9    | 5.3        | 6.7                                          | 8.2    | 3.8    | 4.8                                                          | 5.9      | 7.5        | 9.5                                                     | 11.6   |
|           |                   | 150           | 3.8    | 4.8                                                                 | 5.9    | 6.4        | 8.1                                          | 9.9    | 3.8    | 4.8                                                          | 5.9      | 9.0        | 11.4                                                    | 14.0   |
|           | 70                | 50            | 3.8    | 4.8                                                                 | 5.9    | 6.2        | 7.9                                          | 9.7    | 3.8    | 4.8                                                          | 5.9      | 8.8        | 11.1                                                    | 13.7   |
|           |                   | 100           | 3.8    | 4.8                                                                 | 5.9    | 7.4        | 9.4                                          | 11.5   | 3.8    | 4.8                                                          | 5.9      | 10.5       | 13.3                                                    | 14.3   |
|           |                   | 150           | 3.8    | 4.8                                                                 | 5.9    | 8.6        | 10.9                                         | 13.3   | 3.8    | 4.8                                                          | 5.9      | 12.2       | 14.3                                                    | 14.3   |
| 8         |                   | 250           | 3.8    | 4.8                                                                 | 5.9    | 10.1       | 12.8                                         | 14.3   | 3.8    | 4.8                                                          | 5.9      | 14.2       | 14.3                                                    | 14.3   |
| 0         |                   | 50            | 3.8    | 4.8                                                                 | 5.9    | 8.7        | 11.1                                         | 13.6   | 3.8    | 4.8                                                          | 5.9      | 11.6       | 14.3                                                    | 14.3   |
|           | 100               | 100           | 3.8    | 4.8                                                                 | 5.9    | 10.1       | 12.7                                         | 14.3   | 3.8    | 4.8                                                          | 5.9      | 14.1       | 14.3                                                    | 14.3   |
|           | 100               | 150           | 3.8    | 4.8                                                                 | 5.9    | 11.3       | 14.3                                         | 14.3   | 3.8    | 4.8                                                          | 5.9      | 14.3       | 14.3                                                    | 14.3   |
|           |                   | 300           | 3.8    | 4.8                                                                 | 5.9    | 14.3       | 14.3                                         | 14.3   | 3.8    | 4.8                                                          | 5.9      | 14.3       | 14.3                                                    | 14.3   |
|           |                   | 50            | 3.8    | 4.8                                                                 | 5.9    | 11.8       | 14.3                                         | 14.3   | 3.8    | 4.8                                                          | 5.9      | 14.3       | 14.3                                                    | 14.3   |
|           | 180               | 100           | 3.8    | 4.8                                                                 | 5.9    | 14.3       | 14.3                                         | 14.3   | 3.8    | 4.8                                                          | 5.9      | 14.3       | 14.3                                                    | 14.3   |
|           | 180               | 150           | 3.8    | 4.8                                                                 | 5.9    | 14.3       | 14.3                                         | 14.3   | 3.8    | 4.8                                                          | 5.9      | 14.3       | 14.3                                                    | 14.3   |
|           |                   | 240           | 3.8    | 4.8                                                                 | 5.9    | 14.3       | 14.3                                         | 14.3   | 3.8    | 4.8                                                          | 5.9      | 14.3       | 14.3                                                    | 14.3   |

Failure Mode: (T)Tension (S) Shear


| PULL-OUT (T) | CONCRETE CONE (T) | CONCRETE SPLITTING (T) | CONCRETE EDGE (S) | PRY-OUT (S) | STEEL (T OR S) |
|--------------|-------------------|------------------------|-------------------|-------------|----------------|

TECHNICAL DATA SHEET:

CONCRETE SCREW-ANCHOR 316 (A4) STAINLESS STEEL / BUTTON HEAD

#### SIMPLIFIED DESIGN – 4 ANCHORS PER BASE PLATE

Note: Shear capacity calculation assumes that hole clearance between base plate and anchor is not filled with epoxy (standard construction practice). This can lead to unequal load distribution between fixings. To account for this, since concrete failure can be brittle, only the two anchors closest to concrete edge are assumed to provide shear capacity for concrete edge shear failure mode.



|           |                   |               |        |                                             | CRACK  | ED CONCRET | Ē                                            |        |        |                                             | UN-CRAC | KED CONCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ETE    |        |
|-----------|-------------------|---------------|--------|---------------------------------------------|--------|------------|----------------------------------------------|--------|--------|---------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|
| Anchor    | Edge<br>distance, | Spacing,      | Tensio | n design ca<br><b>ΦΝ<sub>Rk</sub> (</b> kN) |        | Shea       | r design cap<br><b>фV<sub>Rk</sub> (</b> kN) |        | Tensio | n design ca<br><b>фN<sub>Rk</sub> (</b> kN) |         | $\phi V_{Rk}$ (kN)           e         Concrete compression<br>strength, $f_c$ D MPa         20 MPa         32 MPa         50           II.8         6.0         7.6         9           II.8         6.6         8.3         1           II.8         7.5         9.5         1           II.8         7.5         9.5         1           II.8         10.5         13.3         1           II.8         10.5         13.3         1           II.8         12.2         14.3         1           II.8         14.2         14.3         1           II.8         14.2         14.3         1           II.8         14.3         14.3         1 |        |        |
| size (mm) | <b>C</b> (mm)     | <b>S</b> (mm) |        | rete compre<br>strength, <b>f</b>           |        |            | rete compre<br>strength, <b>f</b>            |        |        | rete compre<br>strength, <b>f</b>           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |        |
|           |                   |               | 20 MPa | 32 MPa                                      | 50 MPa | 20 MPa     | 32 MPa                                       | 50 MPa | 20 MPa | 32 MPa                                      | 50 MPa  | 20 MPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32 MPa | 50 MPa |
|           |                   | 50            | 7.6    | 9.6                                         | 11.8   | 4.2        | 5.3                                          | 6.6    | 7.6    | 9.6                                         | 11.8    | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.6    | 9.3    |
|           | 50                | 70            | 7.6    | 9.6                                         | 11.8   | 4.6        | 5.9                                          | 7.2    | 7.6    | 9.6                                         | 11.8    | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.3    | 10.2   |
|           | 50                | 100           | 7.6    | 9.6                                         | 11.8   | 5.3        | 6.7                                          | 8.2    | 7.6    | 9.6                                         | 11.8    | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.5    | 11.6   |
|           |                   | 150           | 7.6    | 9.6                                         | 11.8   | 6.4        | 8.1                                          | 9.9    | 7.6    | 9.6                                         | 11.8    | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.4   | 14.0   |
|           |                   | 50            | 7.6    | 9.6                                         | 11.8   | 6.2        | 7.9                                          | 9.7    | 7.6    | 9.6                                         | 11.8    | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.1   | 13.7   |
|           | 70                | 100           | 7.6    | 9.6                                         | 11.8   | 7.4        | 9.4                                          | 11.5   | 7.6    | 9.6                                         | 11.8    | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.3   | 14.3   |
|           | 70                | 150           | 7.6    | 9.6                                         | 11.8   | 8.6        | 10.9                                         | 13.3   | 7.6    | 9.6                                         | 11.8    | 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.3   | 14.3   |
| 8         |                   | 250           | 7.6    | 9.6                                         | 11.8   | 10.1       | 12.8                                         | 14.3   | 7.6    | 9.6                                         | 11.8    | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.3   | 14.3   |
| 0         |                   | 50            | 7.6    | 9.6                                         | 11.8   | 8.7        | 11.1                                         | 13.6   | 7.6    | 9.6                                         | 11.8    | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.3   | 14.3   |
|           | 100               | 100           | 7.6    | 9.6                                         | 11.8   | 10.1       | 12.7                                         | 14.3   | 7.6    | 9.6                                         | 11.8    | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.3   | 14.3   |
|           | 100               | 150           | 7.6    | 9.6                                         | 11.8   | 11.3       | 14.3                                         | 14.3   | 7.6    | 9.6                                         | 11.8    | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.3   | 14.3   |
|           |                   | 300           | 7.6    | 9.6                                         | 11.8   | 14.3       | 14.3                                         | 14.3   | 7.6    | 9.6                                         | 11.8    | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.3   | 14.3   |
|           |                   | 50            | 7.6    | 9.6                                         | 11.8   | 13.9       | 14.3                                         | 14.3   | 7.6    | 9.6                                         | 11.8    | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.3   | 14.3   |
|           | 180               | 100           | 7.6    | 9.6                                         | 11.8   | 14.3       | 14.3                                         | 14.3   | 7.6    | 9.6                                         | 11.8    | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.3   | 14.3   |
|           | 100               | 150           | 7.6    | 9.6                                         | 11.8   | 14.3       | 14.3                                         | 14.3   | 7.6    | 9.6                                         | 11.8    | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.3   | 14.3   |
|           |                   | 280           | 7.6    | 9.6                                         | 11.8   | 14.3       | 14.3                                         | 14.3   | 7.6    | 9.6                                         | 11.8    | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.3   | 14.3   |

| Failure Mode: (T)Tension (S)SI | Failure Mode: (T)Tension (S) Shear |                        |                   |             |                |  |  |  |  |  |  |
|--------------------------------|------------------------------------|------------------------|-------------------|-------------|----------------|--|--|--|--|--|--|
| PULL-OUT (T)                   | CONCRETE CONE (T)                  | CONCRETE SPLITTING (T) | CONCRETE EDGE (S) | PRY-OUT (S) | STEEL (T OR S) |  |  |  |  |  |  |

Allfasteners® Engineering Department 78 - 84 Logistics Street Keilor Park VIC 3042 Australia +61 3 9330 0555

Allfasteners Pty Ltd. ACN 113 948 100 ABN 86 766 075 300 Copyright © 2019. The contents of this document remains the property of Allfasteners® and may not be reproduced without prior written permission.